Parent Project Muscular Dystrophy

JOIN THE FIGHT. END DUCHENNE.

EVERY SINGLE ONE

Pat Furlong

ParentProjectMD.org
Preclinical Research
- Exon skipping
- Myostatin inhibition
- Biglycan
- Halofuginone
- Tamoxifen
- Animal studies
- IGF-1
- SMTC 1100
- PDE5 Inhibitors
- Protease Inhibitors
- Others
- Gene therapy

Clinical Research
- Mitochondria
- Gene therapy
- Cardiac
- Utrophin
- Read through
- Myostatin
- Exon skipping
- Anti fibrotics

Research Tools
- Duchenne Connect Registry
- Upper body endpoints
- Serum Biomarkers
- Outcome measures
- MRI
- Natural History
- PCORnet Grant

Clinical Care
- Care Considerations
- Certified Duchenne Care Center Program
- Cardiology, Pulmonary Webinar Series
- ESO Tours

Advocacy
- MD-CARE Act
- Annual Report Language
- Putting Patients First White Paper
- Benefit-Risk Study
- FDA Policy Forum
- Draft FDA Guidance
- Newborn Screening
- Access/Reimbursement Framework

Education
- 22 annual Connect Conferences
- ChildMuscleWeakness.Org
- PPMD Web site materials
- PPMD Community Site
- ESO Tours

PPMD: Changing the Landscape of Duchenne
• Largest gene & protein in the human genome
• 2.4 Million base pairs/79 Exons
• Loss of Dystrophin

• 60-70% Deletions
• 10% Duplications
• 10-15% point mutations and other small changes

Multi-system Disease:
• Skeletal Muscle
• Heart
• Bone
• Smooth Muscle
• Cognitive Function
Due to a genetic mutation, the dystrophin protein is missing or not functional in Duchenne.
What does dystrophin do?
What happens when dystrophin is missing?

- no linkage

- Calcium
- Free radicals
- Inflammation
- Oxygen deprivation
- Fibrosis (scarring)
- Muscle cell death
<table>
<thead>
<tr>
<th>Medical Specialty</th>
<th>Diagnosis/Childhood</th>
<th>Tweens/Teens</th>
<th>Young Adults/Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics, Genetic Counseling</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
<tr>
<td>Neuromuscular Specialist</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
<tr>
<td>Orthopedic Management</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
<tr>
<td>Rehabilitation Management</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
<tr>
<td>Cardiology</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
<tr>
<td>GI/Swallowing/Nutrition</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
<tr>
<td>Endocrine</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
<tr>
<td>Psychosocial</td>
<td>💌</td>
<td>💌</td>
<td>💌</td>
</tr>
</tbody>
</table>
What is a Clinical Trial?

- A trial is an experiment, not a therapy
- Risks and benefits
 - Data Safety Monitoring Boards (DSMB)
 - May assess safety and data during the trial
- Important to listen to pay attention to the informed consent/assent
Study Types

• Multi-Phase Clinical Trials
 – Pre-clinical
 • lab and animal studies
 – Phase I:
 • First in humans (mechanistic, usually in healthy volunteers, dosing, small n)
 • assess safety
 – Phase IIa:
 • Assess dose requirements
 • IIa and IIb can be a little blurry…..
Study Types

– Phase IIb
 • Assess efficacy; “Pivotal”
 • can combine a and b, testing both efficacy and toxicity
 • larger than phase I

– Phase III
 • Classical randomized control placebo trial 1000-3000 subjects
 – In rare disease, this number can be much smaller

– Phase IV
 • Post-Marketing
 • monitor long term effects
<table>
<thead>
<tr>
<th>Medicine/Therapy</th>
<th>Phase</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys 51 (Eteplirsen) [Sarepta]</td>
<td>Pre-clinical</td>
<td>Completed</td>
</tr>
<tr>
<td>Deflazacort [Marathon Pharmaceuticals]</td>
<td>Phase I</td>
<td>Granted Accelerated Approval September 2016</td>
</tr>
<tr>
<td>Sprionolactone & Eplerenone [Ohio State University]</td>
<td>Phase I/II</td>
<td>Pending FDA Review -- PDUFA Date 10/24/17</td>
</tr>
<tr>
<td>Translarna (Ataluren) [PTC Therapeutics]</td>
<td>Phase II</td>
<td>Approval February 2017</td>
</tr>
<tr>
<td>Givonstat [Italfarmaco]</td>
<td>Phase III</td>
<td></td>
</tr>
<tr>
<td>Raxone (Idebenone) [Santhera]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-4045/SRP-4053 [Sarepta]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT-1004 [Catabasis]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche (BMS-986089) [Bristol Myers Squibb]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF-06252616 [Pfizer]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vamorolone (VBP15) [Reveragen]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ezutromid (SMT C1100) [Summit PLC]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FG-3019 [Fibrogen]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS-065/NCNP-01 [NS Pharma]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follistatin Gene Transfer [Nationwide Children's]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myoblast Transplantation [Chu De Quebec]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAP-1002 [Capricor]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Transfer of Micro-Dystrophin [Nationwide Children's]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akashi AT-300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epicatechin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bamboo/Pfizer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nationwide Dup 2 Gene Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nationwide GaIGT2 Gene Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitobridge/Astellas MTB-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave Exon Skipping</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clinical Trials in Duchenne

Dystrophin Restoration/Replacement

Exon-Skipping Gene Therapy CRISPR/Cas9 Stop-Codon Readthrough

Steroid Replacement

Anti-Fibrotics

Inflammation & Fibrosis

Calcium Regulation

Ryanodine Receptors Calcium Homeostasis

Muscle Growth and Protection

Myostatin Inhibition Follistatin Upregulation via Gene Therapy Selective Androgen Receptor Modulators Utrophin Upregulation

Treating Duchenne

Cardiac

Blood Flow

Mitochondria

Stem Cells

nNOS Upregulation Mitochondrial Biogenesis Mitochondrial Enhancers

Traditional Cardiac Drugs
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Steroid Replacement
- Anti-Fibrotics
- Inflammation & Fibrosis
- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation
- Cardiac
- Blood Flow
- Mitochondria
- Stem Cells
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

Dystrophin Restoration/Replacement

Treating Duchenne

Muscle Growth and Protection
Dystrophin Restoration and Replacement

- Exon Skipping (skip over the missing/defective part of the gene)
 - Exon 45 and 53 (Golodirsen)
 - Essence (Sarepta)
 - 7-13yo, ambulatory, steroids >6mos
 - Exon 53
 - NS Pharma
 - 4-9yo, ambulatory, steroids >6mos
- WAVE Life Sciences
 - Exon 51
 - Protocol not yet announced
Dystrophin Restoration and Replacement

- Stop Codon Read-through (Ignore the missing/defective part of the gene)
 - Translarna (PTC)
 - Advisory Committee meeting Sept 28
 - Phase 3 extension study now
 - >5, ambulatory, steroids >12 mos
Gene Therapies

• Gene therapies
 – Restore or replace the gene
 – Not mutation specific

3 Major Efforts:

• Microdystrophin
 – Nationwide Children’s Hospital
 – Exons 18-58
 – Muscle specific
 • Doesn’t cross blood brain barrier
 – Ages
 • 6 patients, 3mos – 3 years, 6 patients, 4 -7 years
 – Can start enrolling after permission from FDA (2017)
Gene Therapies

• SGT-001
 – Solid GT
 – Microdystrophin
 – Preclinical

• PF-06939926
 – Bamboo Pfizer
 – Microdystrophin
 – Preclinical
Gene Therapy

- Exon 2 Duplication Strategy
 - Preclinical
 - Nationwide Children’s Hospital
 - Only study looking at duplications
 - Specific only to duplications in exon 2
Gene Therapies

• All use virus (AAV 9 specific to skeletal muscle) to deliver microdystrophins with the “business ends” of the dystrophin
• Studies will determine the most efficient microdystrophin
• Effect is thought to last ~10 years
• Cannot be repeated at this time
 – Working to avoid the formation of antibodies to the virus
 – Goal – re-dosing
Clinical Trials in Duchenne

Exon-Skipping Gene Therapy CRISPR/Cas9 Stop-Codon Readthrough

Steroid Replacement

Anti-Fibrotics Inflammation & Fibrosis

Calcium Regulation

Ryanodine Receptors Calcium Homeostasis

Dystrophin Restoration/Replacement

Stem Cells Traditional Cardiac Drugs

Cardiac Blood Flow Mitochondria

nNOS Upregulation Mitochondrial Biogenesis Mitochondrial Enhancers

Muscle Growth and Protection

Myostatin Inhibition Follistatin Upregulation via Gene Therapy Selective Androgen Receptor Modulators Utrophen Upregulation

ParentProjectMD.org LEADING THE FIGHT TO END DUCHEENNE Parent Project Muscular Dystrophy
Muscle Growth and Regeneration

- Utrophin modulator
 - Ezutromid (SMT C1100)
 - Summit Pharm, Phase 2
 - 5-10yo, ambulatory
 - Steroids >6 mos
 - Biglycan (TVN-102)
 - Tivorsan Pharma
 - Pre-clinical
Muscle Growth and Regeneration

- Myostatin Inhibition
 - Domagrozumab
 - Pfizer, Phase 2
 - 6-<16yo, ambulatory, steroids >6mos
 - BMS 986089 (now Roche)
 - BMS/Roche, Phase 1
 - 6-11yo, ambulatory, steroids >6mos
Muscle Growth and Regeneration

- Selective Androgen Receptor Modulator
 - DT-200 (Akashi Therapeutics)
 - Very early preclinical

- Selective Estrogen Receptor Modulators (Tomoxifen)
 - In trials in Europe
 - Possible anti-fibrotic
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Steroid Replacement
- Anti-Fibrotics
- Dystrophin Restoration/Replacement
- Inflammation & Fibrosis
- Calcium Regulation
- Muscle Growth and Protection
- Ryanodine Receptors
- Calcium Homeostasis
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation
- Stem Cells
- Traditional Cardiac Drugs
- Cardiac
- Blood Flow
- Mitochondria
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

ParentProjectMD.org

LEADING THE FIGHT TO END DUCHEENNE
Parent Project Muscular Dystrophy
Anti-inflammatory

• Givinostat
 – Italfarmaco, HDAC inhibitor
 – Phase 3
 – >6yo, ambulatory, steroids >6mos
Anti-inflammatory

• Edasalonexent
 – Catabasis, Phase 2a;
 – NFkB inhibitor, anti-fibrotic
 – 4-7yo, ambulatory, steroid naïve

• Vamorolone
 – ReveraGen, Phase 2;
 – Steroid alternative
 – 4-<6yo, ambulatory, steroid naive
Anti-inflammatory

• Malincrot
 – Pre-clinical
 – MK1411

• Pamrevlumab
 – FG-3019, Fibrogen, anti-fibrotic
 – Antibody to connective tissue growth factor
 – Phase 2
 – >12yo, non-ambulatory, steroids >6mos
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Dystrophin Restoration/Replacement
 - Cardiac
 - Blood Flow
 - Mitochondria
 - nNOS Upregulation
 - Mitochondrial Biogenesis
 - Mitochondrial Enhancers
- Calcium Regulation
 - Ryanodine Receptors
 - Calcium Homeostasis
- Inflammation & Fibrosis
- Steroid Replacement
- Anti-Fibrotics
- Traditional Cardiac Drugs
- Muscle Growth and Protection
 - Stem Cells
 - Myostatin Inhibition
 - Follistatin Upregulation via Gene Therapy
 - Selective Androgen Receptor Modulators
 - Utrophin Upregulation

ParentProjectMD.org
Calcium Regulation

• ARM210
 – Armgo Pharma, Phase 1, not yet recruiting
 – Restore normal balance of Ca within the cell by correcting calcium leaks in the ryanodine receptor calcium channel complex
 – ? Progress

• AT-300
 – Akashi Therapeutics, preclinical
 – Restore stretch-activated calcium channels (protection of muscle strength loss after exercise) in heart and skeletal muscles
 – ? progress
Cardiac Therapies

- CoQ10 and Lisinopril
 - Completed, under evaluation
- Spironolactone v.s. Eplerenone
 - Ohio State University
 - Phase 3
- Cap-1002
 - Capricor
 - Phase 2 complete, under evaluation
 - Intracoronary delivery of stem cell therapy
 - Next phase
 - IV infusion, delivering cells systemically
Mitochondria

- Epicatechin
 - Cardero Therapeutics
 - Mitochondrial growth
 - 8-17yo, non-ambulatory, no steroid required

- Raxone (Idebenone)
 - Santhera
 - Preservation of respiratory function
 - Delos Trial
 - Steroid naïve complete, Seeking FDA review
 - Sideros Trial
 - Phase 3
 - >10yo, steroids >12 mos, ambulatory or non-ambulatory
Mitochondria

• MTB-1
 – Mitobridge and Astellas Pharma
 – Improved mitochondrial function
 – Pre-clinical
<table>
<thead>
<tr>
<th>DRUG</th>
<th>PRECLINICAL</th>
<th>PHASE I</th>
<th>PHASE I/II</th>
<th>PHASE II</th>
<th>PHASE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXONDYS 51 (ETEPLIRSEN) [SAREPTA]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GRANTED ACCELERATED APPROVAL SEPTEMBER 2016</td>
</tr>
<tr>
<td>DEFLAZACORT [MARATHON PHARMACEUTICALS]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>APPROVAL FEBRUARY 2017</td>
</tr>
<tr>
<td>SPIRONOLACTONE & EPLERENONE [OHIO STATE UNIVERSITY]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSLARNA™ (ATALUREN) [PTC THERAPEUTICS]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIVINOSTAT (ITF2357) [ITALFARMACO]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAXONE® (IDEBENONE) [SANTHERA]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-4045/SRP-4053 [SAREPTA]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COENZYME Q10 & LISINOPRIL [US DEPARTMENT OF DEFENSE]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF-06252616 [PFIZER]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FG-3019 [FIBROGEN]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS-065/NCNP-01 [NS PHARMA]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAMOROLONE (VBP15) [REVERAGEN]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT-1004 [CATABASIS]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZUTROMID (SMT C1100) [SUMMIT PLC]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOLLISTATIN GENE TRANSFER [NATIONWIDE CHILDREN'S]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS-986089 [BRISTOL MYERS SQUIBB]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYOBLAST TRANSPLANTATION [CHU DE QUÉBEC]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAP-1002 [CAPRICOR]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE TRANSFER OF MICRO-DYSTROPHIN [NATIONWIDE CHILDREN'S]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Access & Reimbursement
What can we do to help these therapies move through the pipeline?

- Continue advocating in Washington
- Collect data on these patients through Duchenne Connect
- Tell patient stories to regulators
- Work with Congress on legislation
- Collect patient preference data about how families think and feel about emerging therapies
 - Weighing benefits and risks
 - New one around gene therapy
PPMD Access Resource Center

www.parentprojectmd.org/accessresources

Goals
Provide education and guidance on access process
Provide product specific resources for Patients, Clinicians, Payers
PPMD: Fighting for Every Single [One]

Leading Teen/Adult Initiatives
ABLE Act
ablenc.org

• **What is an ABLE Account?**
 • Tax-advantaged savings accounts for people with disabilities & their families. Beneficiary of the account is the account owner.

• **Why do we need ABLE accounts?**
 • Eligibility for most public benefits require that people with disabilities also be poor (less than $2000 in savings). ABLE savings accounts will not effect benefit eligibility.

• **Am I eligible for an ABLE account?**
 • Diagnosis of DBMD onset must be prior to age of 26 to be eligible for ABLE account.

• **Are there limits on contributions to the ABLE account and savings limits?**
 • Yes. Annual contributions cannot exceed $14,000 and once the account exceeds $100,000 beneficiary’s SSI benefit will be suspended until account falls below that threshold.
Advocacy Conference
PPMD School Advocacy

Resources

Brain Pop Video
PPMD’s 4-minute animated video about Duchenne for kids of all ages.
https://www.youtube.com/watch?v=6wLnR7GJakY

Education Matters For Parents
Helpful tips on how to talk about Duchenne
Issues to be aware of at school
An Individualized Education Plan (IEP) overview
Sample scenarios and suggested ways to respond

Education Matters For Teachers
A practical overview of Duchenne
Classroom accommodations
Suggested inclusive school activities
What to be aware of regarding treatment/medications
Confidentiality/sensitivity concerns

School Presentation Materials
‘Chocolate Chip Cookie’ class presentation
http://www.parentprojectmd.org/site/PageServer?pagename=Understand_professionals_teachers
PPMD School Webinars

Navigating School: An Ongoing Journey
https://www.youtube.com/watch?v=M1py6M9ce0I

From Where We Sit (Adults with Duchenne): ‘PCA’ – 3 Little Letters that Mean So Much
https://www.youtube.com/watch?v=5lBEdb4IBIk

Promoting Independence In Children with Duchenne:
Panel of Parents Whose Sons Live Away from Home Reflect on How they Navigated the Delicate Balance of Protecting Their Sons, While Fostering Independence
https://www.youtube.com/watch?v=vtWbyt-j-IA
Parent Project Muscular Dystrophy

JOIN THE FIGHT. END DUCHENNÉ.

Annie@ParentProjectMD.org
Ryan@ParentProjectMD.org